
Grappa:
Faster data-intensive applications
through latency tolerance

Jacob Nelson, Brandon Holt, Brandon Myers,  
Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin

University of Washington

May 7, 2014

1

In-memory data-intensive applications

• Lots of application areas: 
 Social network analysis 
 Machine learning 
 Bioinformatics 
 …

• Data size is in terabytes, 
not petabytes 
 (fits in memory on a cluster!)

• Common element is focus on
access to data, potentially with
challenging access patterns

2

S.cerevisiae 
[von Mering et al.]

Frameworks for data intensive applications

3

Dryad

“Pleasantly” parallel problems Graph analytics

Relational queries

And many more….

Why is everybody rolling their own?

• Specialized, restricted programming models for each application domain

• Often built from the ground up by application domain experts

• Not a lot of common infrastructure

4

Why is everybody rolling their own?

• Specialized, restricted programming models for each application domain

• Often built from the ground up by application domain experts

• Not a lot of common infrastructure

5

Could these different models 
share a common, general platform?

Grappa

• General infrastructure for in-memory data-intensive applications

• C++11 library that runs on your cluster

• A simple, flexible model: shared memory and threads

• Grappa lets you program your cluster as if it was a single big machine

• Optimized for great performance in the worst case using latency tolerance

6

7

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

8

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

9

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

Grappa

10

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

Grappa

In-memory 
Map/Reduce

11

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

Grappa

In-memory 
Map/Reduce GraphLab

12

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

Grappa

In-memory 
Map/Reduce GraphLab Relational query

engine

13

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

Grappa

In-memory 
Map/Reduce GraphLab Relational query

engine
Native

Grappa code

14

DRAM DRAM DRAM DRAM

Core Core Core Core

InfiniBand network

Linux / PThreads / MPI

Grappa

In-memory 
Map/Reduce GraphLab Relational query

engine
Native

Grappa code

Your 
application 

here!

15

Outline

• Motivation

• Programming Grappa

• Key components

• Building frameworks on Grappa

• Other projects

Grappa’s system view

16

Global data

DRAM DRAM DRAM DRAM

Core Core Core Core

Network

Global Tasks

The key observations

17

These applications have lots of parallelism

Individual operation latency doesn’t matter: 
We care only about overall time to solution

Main idea: tolerate latency with other work

18

Task 1

read()

DRAM DRAM DRAM DRAM

Main idea: tolerate latency with other work

19

Task 1

read()

DRAM DRAM DRAM DRAM

Task 2

Task ~1000

Main idea: tolerate latency with other work

20

Task 1

Task 2

Task ~1000

read()

DRAM DRAM DRAM DRAM

21

Outline

• Motivation

• Programming Grappa

• Key components

• Performance

• Other projects

A simple example

!
• Abstract example:

• TB+ sized directed imbalanced tree

• all memory-resident

• traverse vertices reachable from a

given start vertex

22

A single node, serial starting point

23

struct Vertex { 
 index_t id;
 Vertex * children;
 size_t num_children; 
};  
 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

A single node, serial starting point

24

struct Vertex { 
 index_t id;
 Vertex * children;
 size_t num_children; 
};  
 
 
  

  
  
  
  
 
 
int main(int argc, char * argv[]) { 
 Vertex * root = create_big_tree(); 
 search(root); 
 return 0; 
}
!
!
!
!

A single node, serial starting point

25

struct Vertex { 
 index_t id;
 Vertex * children;
 size_t num_children; 
};
 
void search(Vertex * vertex_addr) { 
 Vertex v = *vertex_addr; 

 Vertex * child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) { 
 Vertex * root = create_big_tree(); 
 search(root); 
 return 0; 
}
!
!
!
!

A single node, serial starting point

26

struct Vertex { 
 index_t id;
 Vertex * children;
 size_t num_children; 
};
 
void search(Vertex * vertex_addr) { 
 Vertex v = *vertex_addr; 

 Vertex * child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) { 
 Vertex * root = create_big_tree(); 
 search(root); 
 return 0; 
}
!
!
!
!

A single node, serial starting point

27

struct Vertex { 
 index_t id;
 Vertex * children;
 size_t num_children; 
};
 
void search(Vertex * vertex_addr) { 
 Vertex v = *vertex_addr; 

 Vertex * child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) { 
 Vertex * root = create_big_tree(); 
 search(root); 
 return 0; 
}
!
!
!
!

Add boiler-plate Grappa code

28

struct Vertex { 
 index_t id;
 Vertex * children;
 size_t num_children; 
};
 
void search(Vertex * vertex_addr) { 
 Vertex v = *vertex_addr; 

 Vertex * child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) {
 init(&argc, &argv); 
 run([]{
 Vertex * root = create_big_tree(); 
 search(root); 
 });
 finalize(); 
 return 0; 
}
!
!

Making graph & vertices into global structures

29

struct Vertex { 
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children; 
};
 
void search(GlobalAddress<Vertex> vertex_addr) { 
 Vertex v = *vertex_addr; 

 GlobalAddress<Vertex> child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) {
 init(&argc, &argv); 
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree(); 
 search(root); 
 });
 finalize(); 
 return 0; 
}
!
!

Making graph & vertices into global structures

30

struct Vertex { 
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children; 
};
 
void search(GlobalAddress<Vertex> vertex_addr) { 
 Vertex v = delegate::read(vertex_addr); 

 GlobalAddress<Vertex> child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) {
 init(&argc, &argv); 
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree(); 
 search(root); 
 });
 finalize(); 
 return 0; 
}
!
!

Make the loop over neighbors parallel

31

struct Vertex { 
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children; 
};
 
void search(GlobalAddress<Vertex> vertex_addr) { 
 Vertex v = delegate::read(vertex_addr); 

 GlobalAddress<Vertex> child0 = v.children; 
 forall(0, v.num_children, [child0](int64_t i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) {
 init(&argc, &argv); 
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree(); 
 search(root); 
 });
 finalize(); 
 return 0; 
}
!
!

That’s it! Grappa code for a cluster!

32

struct Vertex { 
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children; 
};
 
void search(GlobalAddress<Vertex> vertex_addr) { 
 Vertex v = delegate::read(vertex_addr); 

 GlobalAddress<Vertex> child0 = v.children; 
 forall(0, v.num_children, [child0](int64_t i) { 
 search(child0+i); 
 } 
}  
  
int main(int argc, char * argv[]) {
 init(&argc, &argv); 
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree(); 
 search(root); 
 });
 finalize(); 
 return 0; 
}
!
!

33

Outline

• Motivation

• Programming Grappa

• Key components

• Performance

• Conclusion

Grappa design

34

void mapper(x) {

k, v = compute(x)

reducers[hash(k)]. append(k,v)

}

void reducer(k, vals) {

results.append(k,sum(vals))

}

forall (e : inputs)

mapper(e)

forall ((k,vals) : reducers.

groups)

reducer(k, vals)

(a) Map/Reduce

while (graph.active_verts.size > �) {

// gather phase

forall (Vertex v : graph.active_verts)

forall (Edge e : v.in_edges)

v.prog.gather(v, e);

// apply phase

forall (Vertex v : graph.active_verts)

v.prog.apply(v);

// scatter phase

forall (Vertex v : graph.active_verts)

forall (Edge e : v.out_edges)

v.prog.scatter(v, e);

}

(b) GraphLab-like API

// FriendsOfFollowers(a,b,c) :-

FollowedBy(a,b), Friends(

b,c), a > 1�

forall(Tuple t : Friends)

hash�.insert(t.get (�), t);

forall(Tuple t : FollowedBy) {

if (t.get(�) > 1�) {

e = hash�.lookup(t.get(1))

results.append(e)

}

}

(c) Datalog query

Figure 2: Framework examples written for a shared memory system.

data-intensive workloads. Figure 2c shows how to per-
form a traditional hash join in a shared memory paradigm.
All data is kept in hash tables stored in shared memory.
Communication is a function of inserting into and look-
ing up hash tables. One parallel loop builds a hash table,
followed by a second parallel loop that filters and probes
the hash table, materializing the results.

Distributed shared memory makes it challenging.
The code in Figure 2 looks simple – and it is – but to
execute it efficiently on a cluster is non-trivial. There are
many challenges, but the key ones are:

Small messages Programs written to a shared memory
model tend to access small pieces of data, which
when executing on a DSM system lead to small inter-
node messages. What were load or store operations
become complex transactions involving small mes-
sages over the network. Conversely, programs writ-
ten using a message passing library, such as MPI,
expose this complexity to programmers, and hence
encourage them to optimize it.

Poor locality As previously mentioned, data-insensitive
applications often exhibit poor locality. For example,
how much communication the gather and scatter

operations in Figure 2b conduct is a function of the
graph partition. Complex graphs frustrate even the
most advanced partitioning schemes [32]. This leads
to poor spatial locality. Moreover, vertices accessed
vary wildly from iteration to iteration. This leads to
poor temporal locality.

Need for fine-grain synchronization Typical data-
parallel applications offer coarse-grained concur-
rency with infrequent synchronization — e.g., when
done crunching all data in a partition. Conversely,
graph-parallel applications exhibit fine-grain
concurrency with frequent synchronization — e.g.,

Memory

Cores

Infiniband network, user level access

...

Memory

Cores

Memory

Cores

Memory

Cores

Message aggregation layer

Distributed
Shared
Memory

Lightweight
Multihreading w/
Global Task Pool

Communication
Layer

Figure 3: Grappa design overview

when done processing work associated with a single
vertex. Therefore, for a DSM solution to be general,
it needs to support fine-grain synchronization.

Fortunately, data-intensive applications have properties
that can be exploited to make DSMs efficient:

Concurrency Data-intensive applications have abundant
parallelism. In all three examples we see, at their
heart, forall loops which express parallelism.

Latency tolerance Performance isn’t dependent on the
latency of execution of any specific parallel
task/thread, as it would be in for example a web
server, but rather the aggregate execution of all
tasks/threads.

These application properties can be tapped to imple-
ment an efficient DSM, which we explore in the next
section by describing how Grappa’s design addresses the
challenges outlined earlier.

3 Grappa Design
Figure 3 shows an overview of Grappa’s DSM sys-

tem. Before describing the Grappa system in detail, we
describe it’s three main components:

Distributed shared memory The DSM system pro-
vides fine-grain access to data anywhere in the sys-
tem. Every piece of global memory is owned by

3

Task n+1

User level context switching

35
Core

L1 Cache

Task n

Task queue Ready queue

Stack

Worker 1
status

Suspended workers

Task 1

Stack

Worker 2
status

Task 2

1 cacheline of status, 
3 cachelines of stack

Main innovation:

We keep state small 
and prefetch  
to cover DRAM latency

of system design on data-intensive workloads, particularly
large-scale graph analysis problems, that are important among
cybersecurity, informatics, and network-understanding work-
loads. The BFS benchmark builds a search tree containing
parent nodes for each traversed vertex during the search. While
this is a relatively simple problem to solve, it exercises the
random-access and fine-grained synchronization capabilities
of a system as well as being a primitive in many other graph
algorithms. Performance is measured in traversed edges per
second (TEPS), where the number of edges is the edges mak-
ing up the generated BFS tree. With some modifications to the
XMT reference version of Graph500 BFS, the XMT compiler
can be made to recognize and apply a Manhattan loop collapse,
exposing enough parallelism to allow it to scale out to 64 nodes
for the problem scales we show. In order to make comparison
easier, we do not employ algorithmic improvements for any of
these versions, though there are many [11, 57]; this makes our
results difficult to compare with published Graph500 results.
Grappa can be expected to benefit the same as MPI due to
decreased communication.

IntSort This sorting benchmark is taken from the NAS Par-
allel Benchmark Suite [9, 44] and is one on which the Cray
XMT’s early predecessor once held the world speed record [2].
The largest problem size, class D, ranks two billion uniformly
distributed random integers using either a bucket or a count-
ing sort algorithm, depending on the strengths of the system.
Bucket sort executes a greater number of loops, but is able
to leverage locality and avoid communication completely in
the final phase, ranking within buckets. For these reasons, the
MPI reference version and our Grappa implementation use
bucket sort. On the other hand, the Cray XMT cannot take
advantage of locality, but has an efficient compiler-supported
parallel prefix sum, so it performs best using the counting
sort algorithm. The performance metrics for NAS Parallel
Benchmarks, including IntSort, are “millions of operations per
second” (MOPS). For IntSort, this “operation” is ranking a
single key, so it is roughly comparable to “GUPS” or “TEPS.”

PageRank This is a common centrality metric for graphs.
PageRank is an iterative algorithm with a common pattern
of gather, apply, and scatter on the rank of vertex. The algo-
rithm is often implemented by sparse linear algebra libraries,
with the main kernel being the sparse matrix dense vector
multiply. For the multiply step, Grappa parallelizes over the
rows and parallelizes each dot product. PageRank has the
fortunate property that the accumulation function over the
in-edges is associative and commutative, so they can be pro-
cessed in any order or in parallel. Rather than the programmer
writing the parallel dot product as local accumulations with
a final all-reduce step, we simply send streaming increments
to each element of the final vector. We compare PageRank
to published results for the Trilinos linear algebra library im-
plemented in MPI [48], and multithreaded PageRank for the
XMT [10]. For Grappa, we run on a scale 29 graph using the

Graph500 generator.
The metric we use is algorithmic time, which means startup

and loading of the data structure (from disk) is not included in
the measurement. Grappa collects statistics about application
behavior (packets sent, context switches, etc) and these are
discussed where appropriate.

7. Evaluation
The goal of our evaluation is to understand whether the core
pieces of the Grappa runtime system, namely our tasking
system and the global memory/communication layer, work
as expected and whether together they are able to efficiently
run irregular applications. We evaluate Grappa in three basic
steps:
• We present results that show that Grappa can support large

amounts of concurrency, sufficient for remote memory ac-
cess and aggregation. The communication layer is able to
sustain a very high rate of global memory operations. We
also show the performance of a graph kernel that stresses
communication and concurrency together.

• We characterize system behavior, including profiling where
execution time goes, and how aggregation affects message
size and rates.

• Finally, we show how some more realistic irregular work-
loads on Grappa compare to the Cray XMT and hand-tuned
MPI code.

7.1. Basic Grappa Performance

User-level context switching Fast context switching is at
the heart of Grappa’s latency tolerance abilities. We assess
context switch overheads using a simple microbenchmark that
runs a configurable number of workers on a single core, where
each worker increments values in a large array.

40

80

120

160

0e+00 1e+05 2e+05 3e+05 4e+05
Number of workers

Av
g

co
nt

ex
t s

w
itc

h
la

te
nc

y
(n

s)

No prefetching
Prefetching

Figure 5: Average context switch time with and without

prefetching.

Figure 5 shows the average context switch time as the num-
ber of workers grow. At our standard operating point (⇡1K

7

Context switching is fast

36

At 1K thread
operating point,

~50 ns

500K threads: 75 ns

!

This is switching at
the bandwidth limit

to DRAM!

Pthreads:  
450-800 ns

37

var

DRAM DRAM DRAM DRAM

var+1var+1var+1

Accessing memory through delegates

Each word of memory has a designated home core 
 All accesses to that word run on that core 

 Requestor blocks until complete

38

var

DRAM DRAM DRAM DRAM

var+1

var+1

var+1

Accessing memory through delegates

Since var is private to home core,

updates can be applied without expensive synchronization

var+1var+1var+1

Mitigating low injection rate with aggregation

39

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

40

Stack

Worker 1

Node 0 

Msg 1

Node n 

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

41

Stack

Worker 2
Stack

Worker 1

Node 0 

Msg 2

Msg 1

Node n 

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

42

Stack

Worker 3

Stack

Worker 2
Stack

Worker 1

Node 0 

Msg 3

Msg 2

Msg 1

Node n 

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

43

Wire
Msg

Stack

Worker 3

Stack

Worker 2
Stack

Worker 1

Node 0  Node n 

Msg 3

Msg 2

Msg 1

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

44

Wire
Msg

Stack

Worker 3

Stack

Worker 2
Stack

Worker 1

Node 0  Node n Msg 3

Msg 2

Msg 1

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

45

Wire
Msg

Stack

Worker 3

Stack

Worker 2
Stack

Worker 1

Node 0  Node n Msg 3

Msg 2

Msg 1

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

46

Wire
Msg

Stack

Worker 3

Stack

Worker 2
Stack

Worker 1

Node 0  Node n Msg 3

Msg 2

Msg 1

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Mitigating low injection rate with aggregation

47

Wire
Msg

Stack

Worker 3

Stack

Worker 2
Stack

Worker 1

Node 0  Node n Msg 3

Msg 2

Msg 1

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)
mpi RDMA (verbs)

Delegation + aggregation  
makes random access fast

GUPS benchmark
increments 

random elements of
distributed array

48

●

●

●

●

●

●

●

●0e+00

1e+09

2e+09

3e+09

16 32 64 96 128
Nodes

At
om

ic
 in

cr
em

en
ts

 p
er

 s
ec

on
d

● ●
Grappa
delegate

RDMA
atomic
increment

49

Outline

• Motivation

• Programming Grappa

• Key components

• Performance

• Conclusion

Exploring Grappa’s performance

50

• Current implementation: 17K lines 
 Runs on x86 Linux clusters with MPI and fast networks (InfiniBand)

• We built three frameworks: 
 A subset of the GraphLab API 
 A relational query execution engine 
 A simple in-memory Map/Reduce engine

• Ran on AMD Interlagos cluster at Pacific Northwest National Laboratory 
 128 nodes 
 Each node: 32 2.1GHz cores, 64GB, 40Gb InfiniBand network 

GraphLab on Grappa

• Subset of the GraphLab API described in PowerGraph paper: 
 Synchronous engine 
 Delta caching optimization

• GraphLab: replicated graph representation and complex partitioning strategy; 
Grappa: simple adjacency list and random partitioning

• 60 lines of code!

• Four benchmarks: PageRank, connected components,  
 single-source shortest path, breadth-first search

• Graphs: Friendster (65M vertices, 1.8B edges),  
 Twitter (41M vertices, 1B edges)

51

Grappa/GraphLab application performance

52

Friendster Twitter

0

2

4

6

0

1

2

3

4

Pagerank CC SSSP BFS Pagerank CC SSSP BFS
Applications

Ti
m

e
(n

or
m

al
ize

d
to

 G
ra

pp
a)

Grappa GraphLab
(pds)

GraphLab
(random)

(a) Application performance (31 nodes)

Twitter

0

100

200

300

400

500

Pagerank

To
ta

l d
at

a
m

ov
ed

 (G
B)

Twitter

0

20

40

60

80

Pagerank

M
ea

n
ag

gr
eg

at
ed

 p
ac

ke
t s

ize
 (k

B)

(b) Communication metrics at
31 nodes on PageRank.

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

Friendster Twitter

0

50

100

0

50

100

150

16 32 64 128 16 32 64 128
Nodes

Ti
m

e
(s

)

● ● ●Grappa GraphLab
(pds)

GraphLab
(random)

●
● ●

●

Synthetic

0.0

0.5

1.0

16 32 64 128
Nodes

Ti
m

e
(n

or
m

al
ize

d)

(c) Scaling PageRank: strong scaling on Twitter and
Friendster, weak scaling on synthetic graphs.

Figure 9: Performance characterization of Grappa’s GraphLab API. (a) shows time to converge (same number of
iterations) normalized to Grappa, on the Twitter and Friendster datasets. (b) shows communication metrics for the
PageRank data points. (c) shows scaling results for PageRank out to 128 nodes – Friendster and Twitter measure strong
scaling, and weak scaling is measured on synthetic power-law graphs scaled proportionally with nodes.

(30-80 kB) most of the network stack overhead (MPI or
TCP) is amortized for both systems.

Figure 10 demonstrates the connection between concur-
rency and aggregation over time while executing PageR-
ank. We can clearly see that each iteration, the number of
concurrent tasks spikes as scatter delegates are performed
on outgoing edges, which leads to a corresponding spike
in bandwidth due to aggregating the many concurrent
messages. At these points, Grappa achieves roughly 1.1
GB/s per node, which is 47% of peak bisection bandwidth
for large packets discussed in §3.3.1, or 61% of the band-
width for 80 kB messages, the average aggregated size.
This discrepancy is due to not being able to aggregate
packets as fast as the network can send them, but is still
significantly better than unaggregated bandwidth.

Figure 9c(left) shows strong scaling results on both
datasets. As we can see, scaling is poor beyond 32 nodes
for both platforms, due to the relatively small size of the
graphs – there is not enough parallelism for either system
to scale on this hardware. To explore how Grappa fares
on larger graphs, we show results of a weak scaling exper-
iment in Figure 9c(right). This experiment runs PageR-
ank on synthetic graphs generated using Graph500’s Kro-
necker generator, scaling the graph size with the number
of nodes, from 200M vertices, 4B edges, up to 2.1B ver-
tices, 34B edges. Runtime is normalized to show distance
from ideal scaling (horizontal line), showing that scaling
deteriorates less than 30% at 128 nodes.

4.2 Relational queries on Grappa
We used Grappa to build a distributed backend to Raco, a
relational algebra compiler and optimization framework
[53]. Raco supports a variety of relational query language

0

100

200

300

400

0 5 10 15 20 25

C
on

cu
rre

nt
 ta

sk
s

(m
illi

on
s)

Peak bandwidth
Peak for aggregated size

0.0
0.5
1.0
1.5
2.0

0 5 10 15 20 25
Time (s)

Ba
nd

w
id

th
(G

B/
s/

no
de

)

Figure 10: Grappa PageRank execution over time on 32
nodes. The top shows the total number of concurrent tasks
(including delegate operations), over the 85 iterations,
peaks decreasing as fewer vertices are being updated.
The bottom shows message bandwidth per node, which
correlates directly with the concurrency at each time step,
compared against the peak bandwidth, and the bandwidth
for the given message size.

frontends, including SQL, Datalog, and an imperative
language, MyriaL. It includes an extensible relational
algebra optimizer and various intermediate query plan
representations.

We compare performance of our system to that of
Shark, a fast implementation of Hive (SQL-like), built
upon Spark. We chose this comparison point because
Shark is optimized for in-memory execution and performs
competitively with parallel databases [65].

Our particular approach for the Grappa backend to
Raco is source-to-source translation. We generate
foralls for each pipeline in the physical query plan (ex-

9

(31 nodes)

Average: 1.33x

A closer look at PageRank

53

Friendster Twitter

0

2

4

6

0

1

2

3

4

Pagerank CC SSSP BFS Pagerank CC SSSP BFS
Applications

Ti
m

e
(n

or
m

al
ize

d
to

 G
ra

pp
a)

Grappa GraphLab
(pds)

GraphLab
(random)

(a) Application performance (31 nodes)

Twitter

0

100

200

300

400

500

Pagerank

To
ta

l d
at

a
m

ov
ed

 (G
B)

Twitter

0

20

40

60

80

Pagerank

M
ea

n
ag

gr
eg

at
ed

 p
ac

ke
t s

ize
 (k

B)

(b) Communication metrics at
31 nodes on PageRank.

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

Friendster Twitter

0

50

100

0

50

100

150

16 32 64 128 16 32 64 128
Nodes

Ti
m

e
(s

)

● ● ●Grappa GraphLab
(pds)

GraphLab
(random)

●
● ●

●

Synthetic

0.0

0.5

1.0

16 32 64 128
Nodes

Ti
m

e
(n

or
m

al
ize

d)

(c) Scaling PageRank: strong scaling on Twitter and
Friendster, weak scaling on synthetic graphs.

Figure 9: Performance characterization of Grappa’s GraphLab API. (a) shows time to converge (same number of
iterations) normalized to Grappa, on the Twitter and Friendster datasets. (b) shows communication metrics for the
PageRank data points. (c) shows scaling results for PageRank out to 128 nodes – Friendster and Twitter measure strong
scaling, and weak scaling is measured on synthetic power-law graphs scaled proportionally with nodes.

(30-80 kB) most of the network stack overhead (MPI or
TCP) is amortized for both systems.

Figure 10 demonstrates the connection between concur-
rency and aggregation over time while executing PageR-
ank. We can clearly see that each iteration, the number of
concurrent tasks spikes as scatter delegates are performed
on outgoing edges, which leads to a corresponding spike
in bandwidth due to aggregating the many concurrent
messages. At these points, Grappa achieves roughly 1.1
GB/s per node, which is 47% of peak bisection bandwidth
for large packets discussed in §3.3.1, or 61% of the band-
width for 80 kB messages, the average aggregated size.
This discrepancy is due to not being able to aggregate
packets as fast as the network can send them, but is still
significantly better than unaggregated bandwidth.

Figure 9c(left) shows strong scaling results on both
datasets. As we can see, scaling is poor beyond 32 nodes
for both platforms, due to the relatively small size of the
graphs – there is not enough parallelism for either system
to scale on this hardware. To explore how Grappa fares
on larger graphs, we show results of a weak scaling exper-
iment in Figure 9c(right). This experiment runs PageR-
ank on synthetic graphs generated using Graph500’s Kro-
necker generator, scaling the graph size with the number
of nodes, from 200M vertices, 4B edges, up to 2.1B ver-
tices, 34B edges. Runtime is normalized to show distance
from ideal scaling (horizontal line), showing that scaling
deteriorates less than 30% at 128 nodes.

4.2 Relational queries on Grappa
We used Grappa to build a distributed backend to Raco, a
relational algebra compiler and optimization framework
[53]. Raco supports a variety of relational query language

0

100

200

300

400

0 5 10 15 20 25

C
on

cu
rre

nt
 ta

sk
s

(m
illi

on
s)

Peak bandwidth
Peak for aggregated size

0.0
0.5
1.0
1.5
2.0

0 5 10 15 20 25
Time (s)

Ba
nd

w
id

th
(G

B/
s/

no
de

)

Figure 10: Grappa PageRank execution over time on 32
nodes. The top shows the total number of concurrent tasks
(including delegate operations), over the 85 iterations,
peaks decreasing as fewer vertices are being updated.
The bottom shows message bandwidth per node, which
correlates directly with the concurrency at each time step,
compared against the peak bandwidth, and the bandwidth
for the given message size.

frontends, including SQL, Datalog, and an imperative
language, MyriaL. It includes an extensible relational
algebra optimizer and various intermediate query plan
representations.

We compare performance of our system to that of
Shark, a fast implementation of Hive (SQL-like), built
upon Spark. We chose this comparison point because
Shark is optimized for in-memory execution and performs
competitively with parallel databases [65].

Our particular approach for the Grappa backend to
Raco is source-to-source translation. We generate
foralls for each pipeline in the physical query plan (ex-

9

(31 nodes)

Relational query execution

• Built a backend for the Raco relational algebra compiler/optimizer

• Queries are compiled into Grappa for loops

• ~700 lines

• Compare with Shark, a Hive/SQL-like query system built on Spark 
using SP2Bench benchmark

54

Relational query execution

55

ample shown in Figure 2c). We extend the code genera-
tion approach for serial code in [49] to generating parallel
shared memory code. The generated code is sent through
a normal C++11 compiler.

All data structures used in query execution (e.g. hash
tables for joins) are globally distributed and shared.
While in terms of programming model this a departure
from the shared-nothing architecture of nearly all paral-
lel databases, the locality-oriented execution model of
Grappa makes the execution of the query virtually iden-
tical to that of these traditional designs. Grappa should
excel at hash joins given that it achieves high throughput
on random access.

Implementing the parallel Grappa code generation was
a relatively simple extension of the generator for serial
C++ code that we use for testing Raco. It required less
than 90 lines of template C++/Grappa code and 600 lines
of support and data structure C++/Grappa code to imple-
ment conjunctive queries, including two join implementa-
tions.

4.2.1 Performance

We focus on workloads that can be processed in memory,
since storage is out of scope for this work. For Grappa, we
scan all tables into distributed arrays of rows in memory,
then time the query processing. To ensure all timed pro-
cessing in Shark is done in memory, we use the methodol-
ogy that Shark’s developers use for benchmarking [2]. In
particular, all input tables are cached in memory and the
output is materialized to an in-memory table. The number
of reducer tasks for shuffles was set to 3 per Spark worker,
which balances overhead and load balance. Each worker
JVM was assigned 52GB of memory. For all queries, we
verified that the Spark workers were assigned tasks.

We ran conjunctive queries from SP2Bench [56]. The
queries in this benchmark involve many joins, which
makes it interesting for evaluating parallel in-memory
systems. We show results on 16 nodes in Figure 11a,
grouped roughly by category: Q3b, Q3c, and Q1 have
few join operations and small output, Q3a and Q9 have
few join operations but larger output, Q5a, Q5b, and Q2
have many joins, and Q4 additionally has quadratic out-
put size. Grappa has a geometric mean speedup of 14x
over Shark. A portion of the performance difference is
from the efficiency of compiled C++ code vs. interpreted
query in a JVM language. To understand how this influ-
ences the results we ran simpler queries, each isolating
a single relational operator. For a select query of 1%
selectivity, Grappa is 12.8x faster (Figure 11b). Thus,
for SP2Bench queries with little use of join and small
output (Q1, Q3b, and Q3c) we can attribute up to 1 or-
der of magnitude of Grappa’s speedup to difference in
executable code. The remainder of the performance dif-
ference is attributable to Grappa’s pipelined query plans

0

10

20

30

40

Q3b Q3c Q1 Q3a Q9 Q5a Q5b Q2 Q4
Query

Ti
m

e
(n

or
m

al
ize

d
to

 G
ra

pp
a)

Grappa Shark

(a)

0

5

10

Jo
in

1:m
an

y

Sele
ct

1%

Sele
ct

99
%

Query

Ti
m

e
(n

or
m

al
ize

d
to

 G
ra

pp
a)

Grappa Shark

(b)

Figure 11: Relational query performance. (a) The
SP2Bench benchmark on 16 nodes. Query Q4 is a large
workload so it was run with 64 nodes. (b) Single-operator
microbenchmark queries

vs. Shark’s use of shuffle for joins [65]. Grappa’s speedup
on select with 99% selectivity falls to 4.23x, so Grappa’s
mechanism for materializing output (appending to a C++
STL vector) is slower. This accounts for the 2x relative
decrease in performance on Q3a and Q9. Although we
see a single join on Shark comes much closer to the per-
formance of Grappa, the large gap in the performance of
Q4 suggests that Grappa benefits greatly from pipelining
relative to the sequences of shuffle joins performed by
Shark.

4.3 Iterative MapReduce on Grappa
We experiment with data parallel workloads by imple-
menting an in-memory MapReduce API in 152 lines of
Grappa code. The implementation involves a forall over
inputs followed by a forall over key groups. In the all-
to-all communication, mappers push to reducers. As with
other MapReduce implementations, a combiner function
can be specified to reduce communication. In this case,
the mappers materialize results into a local hash table, us-
ing Grappa’s partition-awareness. The global-view model
of Grappa allows iterations to be implemented by the
application programmer with a while loop.

4.3.1 Performance

We pick k-means clustering as a test workload; it exer-
cises all-to-all communication and iteration. To provide
a reference point, we compare the performance to the
SparkKMeans implementation for Spark. Both versions
use the same algorithm: map the points, reduce the clus-
ter means, and broadcast local means. The Spark code
caches the input points in memory and does not perist par-
titions. Currently, our implementation of MapReduce is
not fault-tolerant. To ensure the comparison is fair, we
verified that no bytes were written to the filesystem by
Spark. We run k-means on a dataset from Seaflow [59],

10

Average: 14x

In-memory Map/Reduce

• Simple implementation of Map/Reduce model for iterative applications 
(no fault-tolerance)

• 152 lines

• Compared with Spark, configured to avoid fault-tolerance

• Benchmark: K-Means on SeaFlow dataset (8.9GB)

56

57

0.0

2.5

5.0

7.5

10.0

10 10000
k

M
ea

n
ite

ra
tio

n
tim

e
 (n

or
m

al
ize

d
to

 G
ra

pp
a)

Grappa (MapReduce) Spark

(a) performance for 64 nodes

0.00

0.25

0.50

0.75

1.00

2 4 10 20 100 1000 400010000
k

Fr
ac

tio
n

of
 it

er
at

io
n

tim
e

Phase
Map
Combine
Reduce
Reallocate
Broadcast

(b) breakdown of time spent in MapRe-
duce portions for Grappa-MapReduce

0e+00

2e+07

4e+07

6e+07

20 40 60
Nodes

Ap
pe

nd
 m

es
sa

ge
s/

s

(c) message rate of hashtable appends
that implement shuffle for K =
cores = 1024

Figure 12: Data parallel experiments using k-means on a 8.9GB Seaflow dataset.

DSM systems, including IVY [42], used frequent invali-
dations to provide sequential consistency, inducing high
communication costs for write-heavy workloads. Later
systems relaxed the consistency model to reduce com-
munication demands. Release consistency, for example,
allows updates to be buffered between synchronization
events. Some systems further mitigated performance
degradation due to false sharing by adopting multiple
writer protocols that delay integration of concurrent writes
made to the same page. The Munin [14, 18] and Tread-
Marks [40] systems exploited both of these ideas, but still
incurred some coherence overhead. Paging strategies have
presented an additional opportunity for innovation in re-
ducing update cost: ownership and transmission of large
pages make better use of processor page management
mechanisms and network wire bandwidth when locality
is abundant, but otherwise result in increased false shar-
ing and wasted bandwidth moving large pages. Munin
and Blizzard [57] allowed the tracking of ownership with
variable granularity to address these problems. Grappa fol-
lows the lead of TreadMarks and provides DSM entirely
at user-level through a library and runtime. FaRM [25]
offers lower latency and higher throughput updates to
DSM than TCP/IP via lock free and transactional access
protocols exploiting RDMA, but remote access through-
put is still limited to the RDMA operation rate which is
typically an order of magnitude less than the per node
network bandwidth.

Partitioned Global Address Space languages The
high-performance computing community has largely dis-
carded the coherent distributed shared memory approach
in favor of the Partitioned Global Address Space (PGAS)
model. Examples include Split-C [21], Chapel [19],
X10 [20], Co-array Fortran [51] and UPC [27]. What is
most different between general DSM systems and PGAS
ones is that remote data accesses are explicit, thereby
encouraging developers to use them judiciously. Grappa
follows this approach, implementing a PGAS system at
the language level, thereby facilitating compiler and pro-
grammer optimizations.

Distributed data-intensive processing frameworks
There are many other data-parallel frameworks like
Hadoop, Haloop [17], and Dryad [38]. These are designed
to make parallel programming on distributed systems eas-
ier; they meet this goal by targeting data-parallel pro-
grams. There have also been recent efforts to build param-
eter servers for distributed machine learning algorithms
using asynchronous communication and distributed key-
value storage built from RPCs [6,7]. The incremental data-
parallel system Naiad [47] achieves both high-throughput
for batch workloads and low-latency for incremental up-
dates. Most of these designs eschew DSM as an applica-
tion programming model for performance reasons. How-
ever, a high-throughput DSM like Grappa is a useful
building block on its own for applications or higher-level
abstractions. Future work may expand Grappa to support
low-latency networking for critical tasks similar to Naiad.

6 Conclusions & Future work
This work is based on the premise that writing data-

intensive applications and frameworks in a shared mem-
ory environment is simpler than developing custom in-
frastructure from scratch. Based on this premise, we
show that a DSM system can be efficient for this applica-
tion space by judiciously exploiting the key application
characteristics of concurrency and latency tolerance. Our
data demonstrates that frameworks such as map/reduce,
GraphLab, and query execution are both easy to build
on this system and efficient. Our map/reduce and query
execution implements are an order of magnitude faster
than the custom frameworks for each. Our vertex-centric
GraphLab-inspired API is 1.33⇥ faster than GraphLab,
without the need for complex graph partitioning schemes.

While the core Grappa runtime is complete, there is a
wealth of ongoing research and development. Presently
there is no built-in fault-tolerance mechanism. The funda-
mental challenge with fault-tolerance with Grappa is the
wealth of inter-node partial execution state. A straightfor-
ward solution is to rely on applications to checkpoint state
at appropriate points. Research into generic mechanisms
built into the runtime is ongoing. In addition work is

12

Writing against Grappa directly

• Implemented Beamer’s direction-optimizing BFS for low-diameter scale-free
graphs

• Not expressible in GraphLab model

• Compared with GraphLab BFS implementation

58

Writing against Grappa directly

59

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Friendster Twitter

0

10

20

0

5

10

15

16 32 64 128 16 32 64 128
Nodes

Ti
m

e
(s

)

Platform

Grappa

GraphLab

Version

●

●

●

●

GraphLab
(pds)
GraphLab
(random)

Grappa

Grappa (native)

Figure 13: Scaling BFS out to 128 nodes. In addition
to Grappa’s GraphLab engine, we also show a custom
algorithm for BFS implemented natively which employs
Beamer’s bottom-up optimization to achieve even better
performance.

where each instance is a flow cytometry sample of sea-
water containing characteristics of phytoplankton cells.
The dataset is 8.9GB and contains 123M instances. The
clustering task is to identify species of phytoplankton so
the populations may be counted.

The results are shown in Figure 12a for K = 10
and K = 10000. We find Grappa-MapReduce to be
nearly an order of magnitude faster than the comparable
Spark implementation. Absolute runtime for Grappa-
MapReduce is 0.13s per iteration for K = 10 and 17.3s
per iteration for K = 10000; this compares to 1s and
170s respectively for Spark.

To understand this performance difference we profiled
the Grappa-MapReduce version (Figure 12b). Except for
small numbers of clusters, the problem is compute-bound
as most execution time is spent in the map step. When we
profile Spark at similarly large problem sizes we find that
only 50% of the execution time is spent in the map step.
This provides a good indicator of the raw execution time
difference (5X) between Spark and Grappa. This differ-
ence is likely due to a number of factors – data-structures,
object serialization, JVM vs C++, garbage collection, etc.
The remaining 2X difference in performance is due to the
reduce step. Here we see, at large numbers of clusters,
Grappa-MapReduce shuffle takes so little time as to be in-
significant, while the Spark implementation spends much
of its execution time in this step. We attribute this differ-
ence to the underlying Grappa runtime, which is designed
to make small message traffic efficient. Figure 12c shows
the rate of the 40-byte append delegates (32-byte vectors
plus serializer overhead), which implement the all-to-all.
We see that this workload utilizes an small fraction (⇡
4%) of the small-message rate of Grappa (Figure 8).

4.4 Writing directly to Grappa
Not all problems fit perfectly into current restricted pro-
gramming models – for many, a better solution can be
found by breaking these restrictions. An advantage of
building specialized systems on top of a flexible, high-
performance platform is that it makes it easier to imple-
ment new optimizations into domain-specific models, or
implement a new algorithm from scratch natively. For ex-
ample, for BFS, Beamer’s direction-optimizing algorithm
has been shown to greatly improve performance on the
Graph500 benchmark by traversing the graph “bottom-up”
in order to visit a subset of the edges [12]. This breaks
the GraphLab GAS abstraction. We implemented the new
BFS algorithm directly on the existing graph data struc-
ture in 70 lines of code. Performance results in Figure 13
show that this algorithm’s performance is nearly a factor
of 2 better than the GraphLab abstraction can represent.

5 Related Work
Multithreading Hardware-based massive multithread-
ing to tolerate latency include the Denelcor HEP [58],
Tera MTA [9], Cray XMT [30], Simultaneous multithread-
ing [60], MIT Alewife [5], Cyclops [8], and GPUs [29].
Hardware multithreading often pays with lower single-
threaded performance that may limit appeal in the main-
stream market. As a software implementation of mul-
tithreading for mainstream general-purpose processors,
Grappa provides the benefits of latency tolerance only
when warranted, leaving single-threaded performance in-
tact.

Grappa’s closest software-based multithreading ances-
tor is the Threaded Abstract Machine (TAM) [22]. TAM
is a software runtime system designed for prototyping
dataflow execution models on distributed memory super-
computers. Like Grappa, TAM supports inter-node com-
munication, management of the memory hierarchy, and
lightweight asynchronous scheduling of tasks to proces-
sors, all in support of computational throughput despite
the high latency of communications. A notable conclu-
sion [23] was that threading for latency tolerance was
fundamentally limited because the latency of the top-level
store (e.g. L1 cache) is in direct competition with the
number of contexts that can fit in it. However, we find
prefetching is effective at hiding DRAM latency in con-
text switching. Indeed, a key difference between Grappa’s
support for lightweight threads and that of other user level
threading packages, such as QThreads [64], TBB [54],
Cilk [15] and Capriccio [13] is Grappa’s context prefetch-
ing. Grappa’s prefetching could likely improve from com-
piler analyses inspired by those of Capriccio for reducing
memory usage.

Software distributed shared memory Much of the in-
novation in DSM over the past 30 years has focused on
reducing the synchronization costs of updates. The first

11

60

Outline

• Motivation

• Programming Grappa

• Key components

• Performance

• Conclusion

Grappa is Open Source Software

61

http://grappa.io

licensed under AGPLv1

+

Future steps

• Add to library of data structures

• Expand GraphLab API support

• Support and grow open-source project

• Collaborate with you!

62

Conclusion

• Grappa is a platform for accelerating in-memory data intensive applications

• Extreme latency tolerance helps us build a general, fast platform

• Try it out!

63

64

Questions?

1

http://grappa.io

http://grappa.io

